
Discreet Log Contracts Channels and Integration in the Lightning Network

Ichiro Kuwahara
Crypto Garage
Tokyo, Japan

kuwahara@cryptogarage.co.jp

Thibaut Le Guilly
Crypto Garage
Tokyo, Japan

thibaut@cryptogarage.co.jp

Takatoshi Nakagawa
DG Lab

Tokyo, Japan
nakagat@gmail.com

Abstract—Contracts established on a blockchain remove the
need for intermediary third parties, but usually require ex-
ternal data to decide on an outcome, provided by a so-called
oracle. Discreet Log Contracts (DLC) enable establishing
such contracts directly on the Bitcoin blockchain without
direct interaction with an oracle, increasing the privacy
of the contracting parties. Using the Bitcoin blockchain
however also means hitting the scalability issues that are
inherent to it. To solve this issue, we propose a construction
for establishing DLC off-chain through channels enabling the
execution of consecutive contracts requiring only interaction
with the blockchain during the setup and closing phases,
similar to the functioning of the Lightning Network. We
provide an analysis of the construction to ensure its security,
and then describe how DLC channels could be integrated
in parallel to Lightning Network channels making them
easier to use and enabling reuse of the Lightning Network’s
infrastructure.

Index Terms—Bitcoin, smart contract, payment channels

1. Introduction

More than ten years after the writing of the Bitcoin
white paper [12], the Bitcoin blockchain is not only used
as a way to transfer value, but also to establish financial
contracts in a decentralized way. These contracts can be
specified using a simple scripting language (called Script
in Bitcoin) that describes the spending conditions in a
transaction. They however usually rely on external data,
such as a currency exchange rate, that is not directly avail-
able within the execution environment of the scripts. To
work around this limitation, a solution is to use oracles [9],
which provide such information in a format that can be
used within a script’s execution environment (usually in
the form of a digital signature). While putting a minimum
amount of trust into oracles is unavoidable (assuming
that they will not collude with one of the party in the
contract), having the parties requesting data to them leaks
the existence of the contract.

Discreet Log Contracts (DLC) [8] aim to solve this
issue. They enable two parties who do not trust each others
to establish financial contracts directly on the Bitcoin
blockchain without requiring direct interaction with an
oracle. This indirect interaction increases the privacy of
the contracting parties as the oracle need not be aware
of the contract’s existence. DLC are also peer to peer
contracts, in that they don’t require any intermediate party

to be established. As an example, with DLC, futures and
forward contracts can be established between two parties
without having to put any of the funds in the custody of
a cryptocurrency exchange. However, as DLC are settled
on the Bitcoin blockchain, the settlement time as well as
the fees that need to be paid to the miners can limit its
scalability [5]. This puts DLC at a disadvantage compared
to centralized solutions.

A common solution to these limitations is to make
use of second layer protocols [10], that enable the trans-
fer of assets between parties outside of the blockchain
(thus often called off-chain protocols), while still taking
advantage of its security properties. Payment channels,
and in particular the Lightning Network [15], is currently
one of the most widely used layer two solution. We
recall the building blocks of payment channels, as well
as the functioning of DLC in Section 2. Inspired by
payment channels, we present in Section 3 a construction
for establishing DLC channels, enabling the execution
of consecutive contracts requiring interaction with the
blockchain only during the setup and closing phases.

In order to implement these channels, a lot of work
has to be done at multiple layers. At the network level,
the creation of a peer to peer network is a tedious task.
At the application level, monitoring of the blockchain for
the broadcast of transactions from revoked states, as well
as ensuring that liquidity is available in the channels are
non trivial issues to be solved. Fortunately, solutions have
already been proposed in the context of the Lightning
Network. Having the ability for DLC channels to be em-
bedded into the Lightning Network infrastructure would
thus be highly beneficial. Section 4 describes an approach
to achieve this.

While the constructions presented in this paper have
to the best of our knowledge not been proposed before,
they draw inspiration from past and related work that we
discuss in Section 5. We finally conclude and provide
directions for further work in Section 6.

2. Preliminaries

This section introduces the basic building blocks of
payment channels as well as the original concept of DLC.

2.1. Transactions

In Bitcoin a transaction consists of a number of inputs
and outputs. Each output includes a script which specifies

under which conditions the ownership of the value con-
tained inside it can be transferred. Each input refers to a
previous output, and needs to provide arguments to satisfy
its spending conditions. Common examples are outputs
checking for a digital signature from a specific private
key, or requiring signatures from m out of n possible keys.
Outputs can also contain multiple spending conditions,
or spending paths (for example one requiring a single
signature, and another one requiring two) that can be
created using IF/ELSE statements.

2.2. Payment channels

Payment channels are currently among the most pop-
ular solutions to increasing the scalability of blockchain
systems. The concept of payment channels usually re-
volves around broadcasting a limited number of trans-
actions on the blockchain (called on-chain transactions),
while enabling a much larger number of transactions to
occur. This can be securely achieved by having two parties
exchange transactions and digital signatures in such a way
that it is always possible for both of them to enforce
the latest state of the channel (the balance between both
parties) by broadcasting a transaction on-chain, as well as
to recover their funds in case their counter party broadcast
an outdated state. A basic assumption for payment channel
is that both parties must be watching the blockchain for
inclusion of stale transactions, or at least delegate this task
to watchtowers [11].

2.3. Transaction revocation

In order to protect the parties from the broadcast of
an outdated state of the channel, the Lightning Network
uses a transaction revocation mechanism. It works by
having both parties hold a different transaction with the
same output values, but where the output paying them
contains two spending paths: * The first one requires a
signature from a revocation key, * The second one requires
a signature from the party that holds it, but can only be
spent after a certain amount of time has elapsed (using
the CHECKSEQUENCEVERIFY opcode [3]).

A party can revoke a transaction by revealing the pri-
vate key for the first spending path. If this transaction was
to be broadcast on-chain in the future, the counter party
has a certain amount of time to use the revocation key
to claim the funds from the output. Of course the parties
should never reveal their signatures for their revokable
transactions, as it could allow their counter party to steal
their fund if they also know the revocation key.

Note that the protocols and mechanisms for transac-
tions and key exchanges are kept simple in this paper for
the purpose of explanation, but the interested reader can
refer to the Lightning Network specifications ([13], [14])
for examples of how it can be done in practice.

2.4. Discreet Log Contracts

DLC were proposed to enable two parties to enter
into a financial contract using Bitcoin transactions and an
oracle, but without requiring direct interaction with the
oracle, thus leaving a “discreet log”. In other words, the

Fund Transaction

Alice
UTXO

Bob
UTXO

CET
CET

Alice CET

Refund Transaction

Closing Transaction

CET
CET

Bob CET Closing Transaction

Collaborative
Closing Transaction

Only Alice can broadcast

Only Bob can broadcast

Link between a transaction
output and an input spending it

A A

A

B B

B

Figure 1. Illustration of the on-chain DLC transaction flow. Both parties
lock their collaterals in the fund transaction, and can exercise the
outcome of the contract through their CETs. Alternatively, the parties
can agree to close the contract collaboratively, and if the oracle fails to
produce a signature, they can recover their collaterals with the refund
transaction.

parties do not have to inform the oracle of the contract
being established. This is achieved through a peculiar use
of Schnorr signatures [16] that is described in detail in [8].

The second important property of DLC is that they
don’t require trust between the parties, and only minimal
trust to the oracle (essentially that it does not collude with
one of the party). This is achieved through the use of
specially crafted Bitcoin transactions that we recall in this
section. The transaction flow is illustrated in Figure 1.

2.5. Fund transaction

The first transaction that makes up a DLC is the fund
transaction. This transaction takes a number of inputs
coming from each of the parties UTXOs and locks the
collateral of each party into a multi-signature script, re-
quiring a signature from both parties to be unlocked. It can
also include change outputs when the sum of one of the
party’s input UTXOs is greater than the desired contract
collateral. The output script for the multi-signature output
of the fund transaction is detailed in Script 1.

2.6. Refund Transaction

The refund transaction is one of the transactions that
can be used to spend from the fund transaction, and simply
returns the collateral posted by each party. It is intended
to be used only in the case where the oracle does not
publish a signature for the event on which the DLC is
based on. For that reason, it is time locked, meaning that
it cannot be included in the blockchain before a certain
timestamp, that should be set to after the maturity date of
the contract.

2.7. Contract Execution Transactions

A contract execution transaction (CET) is the second
type of transaction that can spend from the fund trans-
action. It encodes a possible outcome of the contract,
meaning that there must be as many CETs as possible
outcomes of the contract. Both parties hold a different set
of CETs, each including two outputs.

The first output of a CET consists of a script that
enables either the party broadcasting it to spend it by using
a combination of its private key and the oracle signature,
or their counter party after a certain time has elapsed after
the transaction was included in the blockchain (using the
Check Sequence Verify op-code [3], the script is detailed
in Script 5). This ensures that if one of the parties was to
broadcast a CET that did not correspond to the outcome
revealed by the oracle, they would lose their fund (this
is somewhat similar to the transaction revocation concept
discussed in Section 2.3).

The second output can be spent directly by the counter
party of the broadcaster.

2.8. Closing Transaction

The closing transaction is used by the broadcaster of
a CET to retrieve the funds locked in the first output. It
satisfies the script of the first CET output by providing
a signature that is created using a combination of the
spender’s private key and the oracle signature.

2.9. Signing Order

In order to guarantee that both parties can always
either recover their funds or execute the contract, the
transactions need to be signed in a specific order.

First, the signatures for the CETs and the refund
transaction are exchanged. As the fund transaction they
spend from has not been signed yet, they cannot be used.

The signatures for the fund transaction are then ex-
changed. Note that as this exchange happens non atomi-
cally, one of the parties will obtain the other party’s sig-
nature first. This gives them a “free option”, in the sense
that they can choose to execute the contract only in the
event that the outcome is favorable to them. However, if
the counter party does not receive the expected signature,
they can choose to spend their UTXOs included in the
fund transaction, rendering it invalid, and thus cancelling
the contract.

2.10. Collaborative Closing

Given the above described transactions, executing a
DLC requires broadcasting three transactions: the fund
transaction, a CET and a closing transaction. However,
once the Oracle has published the outcome, the parties can
decide to create a collaborative closing transaction with
the same output amounts as the CET for the announced
outcome. This reduces the number of required transactions
to two. If the parties would like to re-establish a contract
after maturity, another two transactions will have to be
broadcast on-chain.

3. DLC Channels

In this section, we first describe a naive approach to
establishing and updating a DLC contract off-chain, and
show why it fails. We then present our solution to securely
do it.

3.1. A straw-man proposal

A simple approach to establish off-chain DLC is to
make CETs and the refund transaction revocable. We
assume two parties, Alice and Bob, want to create a
DLC channel, to be able to establish multiple consecutive
contracts. The protocol would be as follow:

1) Alice and Bob create all transactions and ex-
change signatures according to the regular DLC
protocol,

2) Bob broadcasts the fund transaction,
3) After contract maturity, they create a new set of

CETs and a new refund transaction representing
the new contract to establish,

4) Alice sends to Bob her signatures for the new
CETs and refund transaction,

5) Bob sends to Alice his signatures for the new
transactions,

6) Alice sends to Bob her revocation key, revoking
her previous CETs and refund transaction,

7) Bob sends to Alice his revocation key for the
previous DLC transactions.

At the end of this protocol, both Alice and Bob have
the set of signed transactions for the second DLC, and the
transactions for the previous one are revoked. However,
there is an issue at step 6. After sending her revocation se-
cret to Bob, Alice cannot anymore enforce the result from
the first contract. However, as Bob has not yet revealed his
secret, he still has the ability to do so, in addition to having
the ability to enforce the second one. If Bob is dishonest,
he could thus choose not to reveal his revocation key, and
wait until just before the maturity of the second contract
to execute the one that is most favorable to him (he could
also potentially use the previous refund transaction if the
time lock expired). Note that the Lightning Network does
not suffer from this issue, as when updating a channel,
the payer should reveal their secret first as the update will
be unfavorable to them.

In order to solve this issue, we introduce two new
types of transactions in the protocol.

3.2. Update transaction

The first new transaction is the update transaction. It
is similar in structure to the commitment transaction in
the Lightning Network, taking as input the multi-signature
output of the fund transaction, and containing two outputs,
representing the current balance of each party in the
channel. Each party holds a different update transaction, in
order to enable their revocation. The first output contains
three different spending paths (the script for this output
is detailed in Script 2). We describe here the required
arguments for the three paths of the first output of the
transaction held by Alice:

1) A signature from Alice’s revocation key,
2) A signature from both Alice and Bob, plus a time

delay (CSV) d1,
3) A signature from Alice, plus a time delay (CSV)

d2.

The second output contains two different spending
paths (the script is detailed in Script 3), requiring either:

1) A signature from both Alice and Bob,
2) A signature from Bob, plus a time delay (CSV)

d2.

Note that it is necessary that d1 < d2 as will become
clear in the description of the protocol in Section 3.4.
The version held by Bob is similar, with Bob and Alice’s
signatures reversed.

3.3. Buffer transaction

A buffer transaction consumes both outputs of an
update transaction, using the multi-signature paths. It
combines the value of these inputs into a single output,
requiring both Alice and Bob signatures to be unlocked
(the script is detailed in Script 4).

3.4. Offchain DLC protocol

Having these two new types of transactions, we can
describe the protocol for establishing and updating a DLC
channel. The transaction flow is illustrated in Figure 2.

3.4.1. Establishment. The establishment of a DLC chan-
nel is similar to that of an on-chain DLC. We make use
of the two new types of transaction for consistency across
the protocol steps, but note that at this stage they are not
strictly required (one could instead make the CETs and
the refund transaction revokable for this initial contract,
as long as the update and buffer transactions are used for
establishing the second one). In the following, we assume
that the terms of the contract are already agreed upon
between the participants:

1) Alice sends to Bob the set of UTXOs she wants
to use to fund the channel, a public key for later
revocation, as well as a set of public keys to be
used in the transactions,

2) Bob selects a set of UTXOs, and using the
information received from Alice constructs the
transactions and generates signatures for them,

3) Bob sends back his set of UTXOs and public
keys, as well as his signatures for all transactions
except for the fund transaction and his update
transaction,

4) Alice creates the transactions and signatures, and
sends the signatures to Bob (except for her update
transaction),

5) Bob adds the signatures to the fund transaction
and broadcasts it.

As in regular DLC, parties are ensured that their funds
can always be unlocked by signing the fund transaction
last. Note that both parties should validate the signatures
they receive.

3.4.2. Update. At contract maturity, once the oracle has
released a signature, Alice and Bob can decide to create
a mutual closing transaction to terminate the contract,
or if one party is uncooperative, the other party can
broadcast the update, buffer, appropriate CET and closing
transactions. We assume here that instead they wish to
enter in another contract, and have already agreed on the
terms. They can then use the following protocol:

1) Alice and Bob generate the set of transactions
(update, buffer, CETs and refund) for the new
contract, with the update transactions having out-
put values equal to the outcome of the previous
contract,

2) Alice sends her signatures for Bob’s update trans-
action, all CETs and the refund transactions,

3) Bob sends his signatures for Alice’s update trans-
action, all CETs, the refund transactions, as well
as the revocation key for his previous update
transaction,

4) Alice sends the revocation key for her previous
update transaction, as well as the signature for
her buffer transaction,

5) Bob sends his signatures for both buffer transac-
tions.

6) Alice sends her signature for Bob’s buffer trans-
action.

We go through the different steps of this protocol to
analyze the possible actions of both participants after each
step.

Step 2. : Bob obtained Alice’s signature for his
update transaction, giving him the ability to broadcast it.
However, as he does not have Alice’s signature for the
following buffer transaction, he would only be able to use
the third script path returning him the same amount as
decided by the outcome of the previous contract, after
expiration of the time lock. Alice would also recover the
same amount as she was awarded by the outcome of the
previous contract. Given the information held by each
party at this stage, Bob’s update transaction resembles a
mutual closing transaction, with a time delay. Alice on
her side still has the possibility of unilaterally closing the
previous contract would Bob stop cooperating.

Step 3. : Bob has revealed the revocation key for
his previous update transaction, and can thus no longer
broadcast it safely without risking to be penalized. But
since he has the ability to recover his due funds with the
last update transaction, he still can exit the channel would
Alice stop cooperating. Alice also obtained the ability to
broadcast her update transaction (but not the following
buffer transaction).

Step 4. : Alice revoked her previous update trans-
action, and Bob has the ability to broadcast Alice’s buffer
transactions. That means that if Alice were to broadcast
her fund transaction, Bob can force Alice to honor the
contract. While Alice doesn’t yet have the same ability,
broadcast of Bob’s update transaction would only lead to
settling the channel on the previous contract’s outcome.
If Bob were to stop collaborating at this point, Alice can
broadcast her update transaction to either force Bob to
broadcast her buffer transaction and enter in the contract,
or exit the contract at the latest state.

Step 5. : Alice obtained the ability to broadcast
both buffer transactions, either for unilaterally closing
the contract after maturity using the path starting with
her update transaction, or for forcing Bob to honor the
contract were he to broadcast his update transaction before
the term.

Step 6. : Bob now also has the ability to broadcast
all transactions, except for Alice’s update transaction.

Fund Transaction

Alice
UTXO

Bob
UTXO

Alice Update
Transaction

Bob Update
Transaction

Alice Buffer
Transaction

Bob Buffer
Transaction

CET
CET

Alice CET

Refund Transaction

CET
CET

Bob CET

CET
CET

Alice CET

Refund Transaction

CET
CET

Bob CET

Alice Update
Transaction

Bob Update
Transaction

Alice Buffer
Transaction

Bob Buffer
Transaction

...

...

Only Alice can broadcast

Only Bob can broadcast

On chain transaction

Revokable transaction

First trade

Second trade

...

Link between a transaction
output and an input spending it

A

A

A

A

A

B

B

B

B

B

Figure 2. Illustration of the transaction flow for the establishment and update of a DLC channel. The addition of the update and buffer transactions
enables both parties to safely re-enter in a contract after a previous one has expired.

3.5. Comparison with on-chain protocol

Compared with the on-chain version, we note that the
off-chain protocol leads to a larger number of transactions
to be broadcast in the case of a unilateral close (5 com-
pared to 3). However, unilateral closes are expected to
be an exception, and cooperative closes still only require
two transactions to be broadcast. In addition, the off-chain
protocol enables the execution of an unlimited number of
contracts, and apart from the update and buffer transac-
tions, the other transactions are the same as the on-chain
version, meaning that implementations can reuse the code
from the off-chain version.

4. Integration with the Lightning Network

While having the protocol presented in Section 3.4
theoretically enables the creation of DLC channels, im-
plementing all the necessary infrastructure would require
a lot of additional work. A lot of this work has already
been carried on by the many researchers and developers
who have contributed to the development of the Lightning
Network. Leveraging this work, and new or on-going
research such as channel splicing, sub-marine swaps or
channel factories [4] for the creation of DLC channels
would thus reduce the required effort.

In addition, if two parties who already have an estab-

lished Lightning Network channel open with each others
wished to create a DLC channel, it would be impractical
and wasteful for them to have to broadcast another fund
transaction. Another issue arises if the parties wish to
establish several contracts concurrently, as this would
require opening several channels between the two parties.
Finally, as two parties participate in consecutive contracts
within a DLC channel, it might become imbalanced, pre-
venting further contracts to take place.

In this section, we propose a way to integrate DLC
channels within the Lightning Network to enable: *
Reusing the Lightning Network infrastructure for peer
discovery, channel funding, as well as recent innovations
such as channel factories or splicing, * the two parties of
a lightning channel to establish multiple DLC channels
in parallel to the lightning one, reusing the same fund
transaction, * the reallocation of funds between a lightning
channel and DLC channels.

An illustration of the transactions for the integration
of a single DLC channel with a lightning one is given in
Figure 3.

4.1. Split transaction

To divide the allocation of funds from the fund trans-
action to both the lightning and DLC channels, we intro-
duce a split transaction. This transaction contains multiple
outputs, one for the funding of the lightning channel, and
one for the funding of each of the DLC channels, each
with a revocation path and a multi signature path (detailed
in Script 6). Due to the revocation paths, each party needs
to hold a different version of a split transaction.

4.2. Channel splitting

Here we assume that a dual funded lightning channel
already exists between Alice and Bob, that they wish to
establish a single DLC channel in parallel (the protocol
generalizes to multiple ones), and that they have agreed on
how much funds to allocate to each channel. The protocol
for a channel split is as follow:

1) Alice sends signatures for Bob’s update (for the
DLC channel), commitment (for the lightning
channel) and split transactions,

2) Bob sends signatures for Alice’s update, commit-
ment and split transactions, as well as the secret
for his previous commitment transaction,

3) Alice sends the secret to her previous commit-
ment transaction,

4) Alice and Bob follow a protocol similar to pre-
sented in Section 3.4 to finish the establishment
of the DLC channel, with the difference of having
to handle four sets of transactions instead of two
(due to the asymmetry of the split transaction).

Subsequently, both channels can be updated indepen-
dently.

If Alice and Bob wish to re-balance the funds between
the lightning and DLC channels, they can follow a similar
protocol, but revoke the split transactions instead of the
initial commitment transactions of the lightning channel.

Finally, they can also close the DLC channel and
return to a simple lightning channel by creating new

commitment transactions allocating the sums of the funds
of each party in each channel before revoking the split
transaction.

4.3. Discussion

One of the main drawback of our proposed split
channel design, is the larger amount of transactions to
keep track of. This increases the complexity of the system
as well as the burden for watchtowers [11].

Another approach to integrate DLC channels together
with lightning channel would be to use an extra output in
the lightning channel’s commitment transaction, that can
be used as a funding input to a DLC. This was proposed by
Bednár and Pickhardt [2]. While it does effectively reduce
the number of transactions, it also means that for each
update of the lightning channel, all the transactions for
the DLC need to be reconstructed, signed and exchanged.
The update of each channel also becomes dependent
on the state of the other channel, potentially leading to
concurrency issues. We thus believe that the extra cost
induced by the split of the channel is compensated by a
better separation between the two channels and the ability
to update them independently.

We also note that this splitting approach, while de-
signed in the context of allowing DLC channels within
the Lightning network, could also be used to integrate
other types of channel relying on a fund transaction.

5. Related Work

As already discussed in Section 4.3, Bednár and Pick-
hardt [2] previously proposed DLC channels embedded
in the Lightning Network. Their construction works by
adding an extra output to the commitment transaction
of a lightning channel, which is used as the funding
for a DLC. One of the disadvantage of this approach is
the complex interaction between the DLC and lightning
channels. They also mention splitting a channel into a
DLC and lightning one by extending the peer protocol
of the Lightning Network, but details on how this would
be achieved are not given making it difficult to compare
with our proposed approach. Finally, the authors also
mention the possibility to improve the construction if Bit-
coin introduces the SIGHASH_NOINPUT signature hash,
as well as using channel factories. SIGHASH_NOINPUT
would indeed allow for much simpler and more general
constructions similar to the eltoo protocol [6].

Channel factories [4] could indeed prove useful to
make it easier to create DLC channels as well as increase
the scalability for channel setup.

While we chose the penalty model of the Lightning
Network as a basis for the DLC channel construction, in
part due to the desire of enabling integration within it,
the model of micro-payment channels [7] could also be
a viable approach, potentially reducing the asymmetry of
the transactions.

6. Conclusion and Future Work

In this paper we presented a construction for the
establishment of DLC channels. These channels enable

Fund Transaction

Alice
UTXO

Bob
UTXO

Alice Split
Transaction

Bob Split Transaction

Alice Update
Transaction

Bob Update
Transaction

Alice Commitment
Transaction

Bob Commitment
Transaction

Alice Update
Transaction

Bob Update
Transaction

Alice Commitment
Transaction

Bob Commitment
Transaction

DLC Channel

Lightning Channel

DLC Channel

Lightning Channel

A

A

A

A

A

B

B

BB

B

Only Alice can broadcast

Only Bob can broadcast

On chain transaction

Revokable transaction

Link between a transaction
output and an input spending it

A

B

Figure 3. Illustration of the transaction construction for splitting a channel into a DLC and lightning one.

the execution of multiple consecutive contracts between
two parties, while requiring the same amount of on-
chain transactions as regular DLC in the best case, and
two more transactions in the non-cooperative case. We
then proposed an approach to integrate DLC channels
within the Lightning Network, to reuse infrastructure and
technological advances. This approach could also be used
to integrate other types of protocols within the Lightning
Network, as long as they use a fund transaction. We plan
on implementing this integration in the near future, with
a goal of enabling Lightning Network users to enter in
various contracts with the parties with which they have a
channel open.

Another important part of DLC not touched upon
in this paper is the communication between the oracle
and the contracting parties. Here again, leveraging the
existing Lightning Network peer to peer network layer
could reduce the amount of required work. Communica-
tion through the Lightning Network channels could also
be considered, enabling payments to oracles.

Potential upgrades to the Bitcoin protocol will also
have an impact on how DLC channels can be imple-

mented. Firstly, the native support of Schnorr signatures
will enable scriptless script versions of DLC. This would
remove the necessity of a penalty mechanism, as well
as enabling contracts between three or more parties to
be established. Secondly, the addition of a signature hash
type such as SIGHASH_NOINPUT would greatly reduce
the complexity of the channel construction. We will thus
be monitoring these advances closely to integrate them in
the planned implementation of DLC channels when they
become available.

Finally, while the analysis of the protocols presented
in this paper gives us confidence in their correctness, we
would like in future work to leverage the advances in
formal analysis applied to Bitcoin [1] to formally verify
them.

References

[1] Massimo Bartoletti and Roberto Zunino. Bitml: a calculus for
bitcoin smart contracts. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 83–
100, 2018.

[2] Juraj Bednár and Pickhardt René. Lightning discreet log con-
tract channels. https://hackmd.io/@lpQxZaCeTG6OJZI3awxQPQ/
LN-DLC. Accessed: 2020-02-26.

[3] BtcDrak, Mark Friedenback, and Eric Lombrozo. Check-
sequenceverify. https://github.com/bitcoin/bips/blob/master/
bip-0112.mediawiki, 2015. Accessed: 2020-02-26.

[4] Conrad Burchert, Christian Decker, and Roger Wattenhofer. Scal-
able funding of bitcoin micropayment channel networks. Royal
Society open science, 5(8), 2018.

[5] Christian Decker. On the scalability and security of bitcoin. PhD
thesis, ETH Zurich, 2016.

[6] Christian Decker, Rusty Russell, and Olaoluwa Osuntokun. el-
too: A simple layer2 protocol for bitcoin. White paper:
https://blockstream. com/eltoo. pdf, 2018.

[7] Christian Decker and Roger Wattenhofer. A fast and scalable
payment network with bitcoin duplex micropayment channels.
In Symposium on Self-Stabilizing Systems, pages 3–18. Springer,
2015.

[8] Thaddeus Dryja. Discreet log contracts. https://adiabat.github.io/
dlc.pdf, 2017. Accessed: 2020-02-26.

[9] Steve Ellis, Ari Juels, and Sergey Nazarov. Chainlink: A de-
centralized oracle network.(2017). https://link.smartcontract.com/
whitepaper, 2017. Accessed: 2020-02-26.

[10] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick
McCorry, and Arthur Gervais. Sok: Layer-two blockchain proto-
cols. In International Conference on Financial Cryptography and
Data Security, page InPrint, 2020.

[11] Majid Khabbazian, Tejaswi Nadahalli, and Roger Wattenhofer.
Outpost: A responsive lightweight watchtower. In Proceedings of
the 1st ACM Conference on Advances in Financial Technologies,
AFT ’19, page 31–40. Association for Computing Machinery,
2019.

[12] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
http://www.bitcoin.org/bitcoin.pdf, 2009. Accessed: 2020-02-26.

[13] Lightning Network. Bolt #2: Peer protocol for channel man-
agement. https://github.com/lightningnetwork/lightning-rfc/blob/
master/02-peer-protocol.md. Accessed: 2020-02-26.

[14] Lightning Network. Bolt #3: Peer protocol for channel man-
agement. https://github.com/lightningnetwork/lightning-rfc/blob/
master/03-transactions.md. Accessed: 2020-02-26.

[15] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network:
Scalable off-chain instant payments. https://www.bitcoinlightning.
com/wp-content/uploads/2018/03/lightning-network-paper.pdf,
2016. Accessed: 2020-02-26.

[16] Claus-Peter Schnorr. Efficient identification and signatures for
smart cards. In Conference on the Theory and Application of
Cryptology, pages 239–252. Springer, 1989.

Appendix A.
Transaction scripts

For completeness, this appendix lists the scripts for the
transactions that are used in the establishment and update
of DLC channels.
Script 1 (Fund transaction output script).

OP_2
<alice public key>
<bob public key>
OP_2
OP_CHECKMULTISIG

Script 2 (Script for the first output of an update
transaction).

OP_IF
<delay 1>
OP_CHECKSEQUENCEVERIFY
OP_DROP
OP_2

<alice public key>
<bob public key>

OP_2
OP_CHECKMULTISIG

OP_ELSE
OP_IF

<delay 2>
OP_CHECKSEQUENCEVERIFY
OP_DROP
<alice/bob public key>

OP_ELSE
<alice/bob revocation public key>

OP_ENDIF
OP_CHECKSIG

OP_ENDIF

Note that delay 1 must be less than delay 2.

Script 3 (Script for the second output of an update
transaction).

OP_IF
OP_2

<alice public key>
<bob public key>

OP_2
OP_CHECKMULTISIG

OP_ELSE
<delay 2>
OP_CHECKSEQUENCEVERIFY
OP_DROP
<alice/bob public key>
OP_CHECKSIG

OP_ENDIF

Note that delay 2 should be the same value as used in
the first output.

Script 4 (Buffer transaction output script).

OP_2
<alice public key>
<bob public key>

OP_2
OP_CHECKMULTISIG

Script 5 (Script for the first output of a CET).

OP_IF
<alice/bob public key>
+ <oracle message public key>

OP_ELSE
<delay 3>
OP_CHECKSEQUENCEVERIFY
OP_DROP
<bob/alice public key>

OP_ENDIF
OP_CHECKSIG

Note that the + operator represents elliptic curve point
addition.

https://hackmd.io/@lpQxZaCeTG6OJZI3awxQPQ/LN-DLC
https://hackmd.io/@lpQxZaCeTG6OJZI3awxQPQ/LN-DLC
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://adiabat.github.io/dlc.pdf
https://adiabat.github.io/dlc.pdf
https://link.smartcontract.com/whitepaper
https://link.smartcontract.com/whitepaper
http://www.bitcoin.org/bitcoin.pdf
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf

Script 6 (Output script of a split transaction).

OP_IF
<alice/bob revocation public key>

OP_ELSE
<delay>
OP_CHECKSEQUENCEVERIFY
OP_DROP
<alice/bob public key>

OP_ENDIF
OP_CHECKSIG

	Introduction
	Preliminaries
	Transactions
	Payment channels
	Transaction revocation
	Discreet Log Contracts
	Fund transaction
	Refund Transaction
	Contract Execution Transactions
	Closing Transaction
	Signing Order
	Collaborative Closing

	DLC Channels
	A straw-man proposal
	Update transaction
	Buffer transaction
	Offchain DLC protocol
	Establishment
	Update

	Comparison with on-chain protocol

	Integration with the Lightning Network
	Split transaction
	Channel splitting
	Discussion

	Related Work
	Conclusion and Future Work
	References
	Appendix A: Transaction scripts

